Code
./data/20240428T200156-politicians-aux-analysis/n0001-init//n0001-models-phase-i0008-all/fit0x0.extension
Supplementary materials for the manuscript The Role of Linguistic Agency in Mobilizing Election Candidate Support
Data is available from: XYZ, & XYZ. (2024). 2020 U.S. Congressional Elections Tweet Data. figshare. Dataset. https://figshare.com/s/fa404c7439181e36c78
SM-Linguistic-Agency-in-Mobilising-Election-Candidate-Support.pdf
Set Working Directory
Imports
Input and Output Directories and Files
Check Period and Phase in df2
Check Period and Phase in df3
Prepare for Regression
./data/20240428T200156-politicians-aux-analysis/n0001-init//n0001-models-phase-i0008-all/fit0x0.extension
Fitting and Marginalization
Cleanup
Save Data for Reference
Source Helpers
df2 %>%
dplyr::count(Outcome, Phase, Party) %>%
identity() %>%
ggplot() +
geom_bar(
aes(
x=Phase,
y=n,
group = Outcome,
fill = Outcome
),
alpha=0.75,
stat="identity") +
## geom_text(
ggrepel::geom_text_repel(
aes(
x = Phase,
y = n,
label = n,
group = Outcome
),
position = position_stack(vjust = 0.5),
size = 2.5,
angle = 0,
family = "Times New Roman",
color = "black",
box.padding = 0.025,
point.padding = 1e-06,
min.segment.length = 0.05,
force = 0.01,
) +
scale_y_continuous(labels = scales::label_number()) +
labs(y = "tweet count") +
theme_ggeffects() +
cogsys::theme0 +
scale_fill_brewer(palette = "Set1") +
facet_wrap(~ Party) +
NULL
df2 %>%
dplyr::count(Days) %>%
identity() %>%
ggplot() +
geom_line(aes(x=Days, y=n)) +
lineED + lineRD + lineTD + timeDD +
theme_ggeffects() +
cogsys::theme0 +
## cogsys::theme2 +
scale_y_continuous(labels = scales::label_number()) +
labs(y = "tweet count") +
scale_fill_brewer(palette = "Set1") +
NULL
fit01aPh
: Nullfit01aPh: [df0] Agency ~ (1 | Name) + 1
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: Agency ~ (1 | Name) + 1
Data: df0
Control: control
REML criterion at convergence: 26631.7
Scaled residuals:
Min 1Q Median 3Q Max
-7.9514 -0.5639 -0.0023 0.5683 7.3986
Random effects:
Groups Name Variance Std.Dev.
Name (Intercept) 0.006209 0.0788
Residual 0.067519 0.2598
Number of obs: 169997, groups: Name, 870
Fixed effects:
Estimate Std. Error df t value Pr(>|t|)
(Intercept) 4.986e-01 2.807e-03 8.264e+02 177.7 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
---------------------------------------------------------------------
fit01aPh: [df0] Agency ~ (1 | Name) + 1
# R2 for Mixed Models
Conditional R2: 0.084
Marginal R2: 0.000
---------------------------------------------------------------------
fit01aPh: [df0] Agency ~ (1 | Name) + 1
# Intraclass Correlation Coefficient
Adjusted ICC: 0.084
Unadjusted ICC: 0.084
---------------------------------------------------------------------
fit01aPh: [df0] Agency ~ (1 | Name) + 1
# ICC by Group
Group | ICC
-------------
Name | 0.084
---------------------------------------------------------------------
model <- "fit01aPh"
extra <- "9001"
terms <- NULL
suppressWarnings(rm(list = ls(pattern = "^gg88")))
gg88 <- sjPlot::plot_model(get(model), type="re")
fbasefig <- file.path(ofd4, paste0(model, "-xtr-", extra, "-random", paste(terms, collapse = "-x-")))
ggsave(file=paste0(fbasefig,".png"),plot=gg88,width=8,height=44,limitsize=FALSE)
ggsave(file=paste0(fbasefig,".svg"),plot=gg88,width=8,height=88,limitsize=FALSE)
gg88
fit02aPh
: Timefit02aPh: [df0] Agency ~ (Time | Name) + Time
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: Agency ~ (Time | Name) + Time
Data: df0
Control: control
REML criterion at convergence: 24941.9
Scaled residuals:
Min 1Q Median 3Q Max
-8.0353 -0.5639 -0.0047 0.5664 7.3362
Random effects:
Groups Name Variance Std.Dev. Corr
Name (Intercept) 0.006283 0.07927
Time 0.004088 0.06394 0.18
Residual 0.066384 0.25765
Number of obs: 169997, groups: Name, 870
Fixed effects:
Estimate Std. Error df t value Pr(>|t|)
(Intercept) 0.498029 0.002848 816.443563 174.884 < 2e-16 ***
Time -0.010230 0.002634 709.116999 -3.884 0.000112 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
---------------------------------------------------------------------
fit02aPh: [df0] Agency ~ (Time | Name) + Time
# R2 for Mixed Models
Conditional R2: 0.102
Marginal R2: 0.000
---------------------------------------------------------------------
fit02aPh: [df0] Agency ~ (Time | Name) + Time
# Intraclass Correlation Coefficient
Adjusted ICC: 0.102
Unadjusted ICC: 0.102
---------------------------------------------------------------------
fit02aPh: [df0] Agency ~ (Time | Name) + Time
# ICC by Group
Group | ICC
-------------
Name | 0.085
---------------------------------------------------------------------
fit02aPh: [df0] Agency ~ (Time | Name) + Time
=====================================================================
# Average predicted values of Agency
Time | Predicted | 95% CI
------------------------------
-1.00 | 0.51 | 0.50, 0.51
-0.50 | 0.50 | 0.50, 0.51
0.00 | 0.50 | 0.49, 0.50
0.50 | 0.50 | 0.49, 0.50
1.00 | 0.49 | 0.48, 0.50
=====================================================================
# (Average) Linear trend for Time
Slope | 95% CI | p
--------------------------------
-7.57e-03 | -0.01, 0.00 | 0.004
=====================================================================
# (Average) Linear trend for Time
Slope | 95% CI | p
--------------------------------
-7.57e-03 | -0.01, 0.00 | 0.004
suppressWarnings(rm(list = ls(pattern = "^gg88")))
gg88 <- ggeff$pred0 %>% plot(limit_range=FALSE, show_data = FALSE, dot_alpha = 0.05)
## gg88 <- gg88 + timeD + lineE + lineT + lineR + rect5 + cogsys::theme0 ## + scaleA
gg88 <- gg88 + timeD + lineE + lineT + lineR + rect3 + cogsys::theme0 + scaleC
ggsave(file = paste0(ggeff$fbasefig, "-pred0-fig.png"), plot = gg88 + cogsys::theme2, width=8, height=24)
ggsave(file = paste0(ggeff$fbasefig, "-pred0-fig.svg"), plot = gg88 + cogsys::theme2, width=16, height=48)
ggsave(file = paste0(ggeff$fbasefig, "-pred0-Fig.svg"), plot = gg88 + cogsys::theme2, width=12, height=48, limitsize = FALSE)
gg88
fit03aPh
: Time x Phasefit03aPh: [df0] Agency ~ (Time | Name) + Time * Phase
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: Agency ~ (Time | Name) + Time * Phase
Data: df0
Control: control
REML criterion at convergence: 24043.7
Scaled residuals:
Min 1Q Median 3Q Max
-8.1156 -0.5629 -0.0072 0.5649 7.3761
Random effects:
Groups Name Variance Std.Dev. Corr
Name (Intercept) 0.006224 0.07889
Time 0.004129 0.06425 0.18
Residual 0.066017 0.25694
Number of obs: 169997, groups: Name, 870
Fixed effects:
Estimate Std. Error df t value Pr(>|t|)
(Intercept) 5.285e-01 3.170e-03 1.284e+03 166.749 <2e-16 ***
Time 4.459e-02 3.657e-03 2.769e+03 12.192 <2e-16 ***
PhaseAE -4.145e-03 4.178e-03 1.691e+05 -0.992 0.3212
PhaseBR -5.689e-01 3.066e-02 1.686e+05 -18.558 <2e-16 ***
PhaseAR -9.121e-03 4.936e-03 1.697e+05 -1.848 0.0646 .
Time:PhaseAE -3.579e-01 2.590e-02 1.688e+05 -13.820 <2e-16 ***
Time:PhaseBR 1.610e+00 9.670e-02 1.686e+05 16.650 <2e-16 ***
Time:PhaseAR -9.963e-02 7.213e-03 1.676e+05 -13.812 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
---------------------------------------------------------------------
fit03aPh: [df0] Agency ~ (Time | Name) + Time * Phase
# R2 for Mixed Models
Conditional R2: 0.107
Marginal R2: 0.006
---------------------------------------------------------------------
fit03aPh: [df0] Agency ~ (Time | Name) + Time * Phase
# Intraclass Correlation Coefficient
Adjusted ICC: 0.102
Unadjusted ICC: 0.101
---------------------------------------------------------------------
fit03aPh: [df0] Agency ~ (Time | Name) + Time * Phase
# ICC by Group
Group | ICC
-------------
Name | 0.085
---------------------------------------------------------------------
fit03aPh: [df0] Agency ~ (Time | Name) + Time * Phase
=====================================================================
# Average predicted values of Agency
Time | Predicted | 95% CI
------------------------------
-1.00 | 0.45 | 0.44, 0.47
-0.50 | 0.48 | 0.47, 0.49
0.00 | 0.50 | 0.50, 0.51
0.50 | 0.53 | 0.52, 0.54
1.00 | 0.56 | 0.54, 0.57
=====================================================================
# (Average) Linear trend for Time
Slope | 95% CI | p
---------------------------
0.05 | 0.04, 0.06 | < .001
=====================================================================
# (Average) Linear trend for Time
Slope | 95% CI | p
---------------------------
0.05 | 0.04, 0.06 | < .001
suppressWarnings(rm(list = ls(pattern = "^gg88")))
gg88 <- ggeff$pred0 %>% plot(limit_range=FALSE, show_data = FALSE, dot_alpha = 0.05)
gg88 <- gg88 + cogsys::theme0 + timeD + lineE + lineT + lineR + rect3 ## + scaleA
ggsave(file = paste0(ggeff$fbasefig, "-pred0-fig.png"), plot = gg88 + cogsys::theme2, width=8, height=24)
ggsave(file = paste0(ggeff$fbasefig, "-pred0-fig.svg"), plot = gg88 + cogsys::theme2, width=16, height=48)
gg88
fit03aPh: [df0] Agency ~ (Time | Name) + Time * Phase
=====================================================================
# Average predicted values of Agency
Phase | Predicted | 95% CI
--------------------------------
BE | 0.53 | 0.52, 0.53
AE | 0.55 | 0.54, 0.56
BR | -0.15 | -0.22, -0.08
AR | 0.53 | 0.51, 0.54
=====================================================================
Phase | Predicted | 95% CI | p
-----------------------------------------
BE | 0.53 | 0.52, 0.53 | < .001
AE | 0.55 | 0.54, 0.56 | < .001
BR | -0.15 | -0.22, -0.08 | < .001
AR | 0.53 | 0.51, 0.54 | < .001
=====================================================================
# Pairwise comparisons
Phase | Contrast | 95% CI | p
----------------------------------------
BE-AE | -0.02 | -0.03, -0.01 | < .001
BE-BR | 0.68 | 0.61, 0.75 | < .001
BE-AR | 2.34e-03 | -0.01, 0.01 | 0.658
AE-BR | 0.70 | 0.63, 0.77 | < .001
AE-AR | 0.02 | 0.01, 0.04 | 0.003
BR-AR | -0.68 | -0.75, -0.60 | < .001
suppressWarnings(rm(list = ls(pattern = "^gg88")))
gg88 <- ggeff$pred0 %>% plot(limit_range=FALSE, show_data = FALSE, dot_alpha = 0.05)
gg88 <- gg88 + cogsys::theme0 # + timeD + lineE + lineT + lineR + rect4 ## + scaleA
ggsave(file = paste0(ggeff$fbasefig, "-pred0-fig.png"), plot = gg88 + cogsys::theme2, width=8, height=24)
ggsave(file = paste0(ggeff$fbasefig, "-pred0-fig.svg"), plot = gg88 + cogsys::theme2, width=16, height=48)
gg88
fit03aPh: [df0] Agency ~ (Time | Name) + Time * Phase
=====================================================================
# Average predicted values of Agency
Phase: BE
Time | Predicted | 95% CI
-------------------------------
-1.00 | 0.48 | 0.47, 0.49
-0.50 | 0.51 | 0.50, 0.51
0.00 | 0.53 | 0.52, 0.54
0.50 | 0.56 | 0.55, 0.56
1.00 | 0.58 | 0.57, 0.59
Phase: AE
Time | Predicted | 95% CI
-------------------------------
-1.00 | 0.84 | 0.78, 0.89
-0.50 | 0.68 | 0.65, 0.71
0.00 | 0.53 | 0.52, 0.54
0.50 | 0.37 | 0.35, 0.39
1.00 | 0.22 | 0.17, 0.26
Phase: BR
Time | Predicted | 95% CI
--------------------------------
-1.00 | -1.70 | -1.95, -1.45
-0.50 | -0.87 | -1.02, -0.71
0.00 | -0.04 | -0.10, 0.02
0.50 | 0.79 | 0.76, 0.83
1.00 | 1.62 | 1.49, 1.75
Phase: AR
Time | Predicted | 95% CI
-------------------------------
-1.00 | 0.57 | 0.55, 0.60
-0.50 | 0.55 | 0.53, 0.56
0.00 | 0.52 | 0.51, 0.53
0.50 | 0.50 | 0.49, 0.50
1.00 | 0.47 | 0.46, 0.48
=====================================================================
# (Average) Linear trend for Time
Phase | Slope | 95% CI | p
-------------------------------------
BE | 0.04 | 0.04, 0.05 | < .001
AE | -0.31 | -0.36, -0.26 | < .001
BR | 1.65 | 1.47, 1.84 | < .001
AR | -0.06 | -0.07, -0.04 | < .001
=====================================================================
# (Average) Linear trend for Time
Phase | Contrast | 95% CI | p
----------------------------------------
BE-AE | 0.36 | 0.31, 0.41 | < .001
BE-BR | -1.61 | -1.80, -1.42 | < .001
BE-AR | 0.10 | 0.09, 0.11 | < .001
AE-BR | -1.97 | -2.16, -1.77 | < .001
AE-AR | -0.26 | -0.31, -0.21 | < .001
BR-AR | 1.71 | 1.52, 1.90 | < .001
suppressWarnings(rm(list = ls(pattern = "^gg88")))
gg88 <- ggeff$pred0 %>% plot(limit_range=FALSE, show_data = FALSE, dot_alpha = 0.05)
gg88 <- gg88 + timeD + lineE + lineT + lineR + rect0 + cogsys::theme0 + scaleA
## gg88 <- gg88 + cogsys::theme0 + timeD + lineE + lineT + lineR + rect3 + scaleA
ggsave(file = paste0(ggeff$fbasefig, "-pred0-fig.png"), plot = gg88 + cogsys::theme2, width=8, height=24)
ggsave(file = paste0(ggeff$fbasefig, "-pred0-fig.svg"), plot = gg88 + cogsys::theme2, width=12, height=36, limitsize = FALSE)
ggsave(file = paste0(ggeff$fbasefig, "-pred0-Fig.svg"), plot = gg88 + cogsys::theme2, width=12, height=48, limitsize = FALSE)
gg88
# knitr::opts_chunk$set(fig.width=unit(12,"cm"), fig.height=unit(18,"cm"))
# gg88
suppressWarnings(rm(list = ls(pattern = "^gg99")))
gg99 <- gg88 + cogsys::theme2 + scaleA
ggsave(file = paste0(ggeff$fbasefig, "-pred0-FIG.svg"), plot = gg99 + cogsys::theme2, width=12, height=48, limitsize = FALSE)
## gg99
fit04aPh
: Time x Phase x Outcomefit04cPh: [df0] Agency ~ (Time | Name) + Concreteness + Time * Phase * Outcome
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: Agency ~ (Time | Name) + Concreteness + Time * Phase * Outcome
Data: df0
Control: control
REML criterion at convergence: 22947.3
Scaled residuals:
Min 1Q Median 3Q Max
-8.2540 -0.5628 -0.0058 0.5640 7.4058
Random effects:
Groups Name Variance Std.Dev. Corr
Name (Intercept) 0.004628 0.06803
Time 0.003356 0.05793 -0.06
Residual 0.065692 0.25630
Number of obs: 169996, groups: Name, 870
Fixed effects:
Estimate Std. Error df t value Pr(>|t|)
(Intercept) 3.329e-01 8.628e-03 1.939e+04 38.583 < 2e-16
Concreteness 2.193e-01 8.933e-03 1.694e+05 24.549 < 2e-16
Time 5.708e-02 5.593e-03 3.422e+03 10.205 < 2e-16
PhaseAE -4.586e-02 7.678e-03 1.693e+05 -5.973 2.34e-09
PhaseBR -4.964e-01 6.015e-02 1.690e+05 -8.253 < 2e-16
PhaseAR -1.229e-01 1.032e-02 1.662e+05 -11.905 < 2e-16
Outcomewinner 2.169e-02 5.780e-03 1.441e+03 3.752 0.000182
Time:PhaseAE -4.721e-01 5.045e-02 1.692e+05 -9.359 < 2e-16
Time:PhaseBR 1.143e+00 1.900e-01 1.689e+05 6.015 1.80e-09
Time:PhaseAR -5.325e-02 1.520e-02 1.543e+05 -3.503 0.000460
Time:Outcomewinner -2.036e-02 7.192e-03 3.273e+03 -2.831 0.004673
PhaseAE:Outcomewinner 5.817e-02 9.151e-03 1.692e+05 6.357 2.07e-10
PhaseBR:Outcomewinner -8.234e-02 6.985e-02 1.689e+05 -1.179 0.238491
PhaseAR:Outcomewinner 1.483e-01 1.176e-02 1.679e+05 12.614 < 2e-16
Time:PhaseAE:Outcomewinner 1.605e-01 5.876e-02 1.692e+05 2.731 0.006311
Time:PhaseBR:Outcomewinner 5.814e-01 2.205e-01 1.688e+05 2.636 0.008386
Time:PhaseAR:Outcomewinner -4.541e-02 1.728e-02 1.603e+05 -2.627 0.008613
(Intercept) ***
Concreteness ***
Time ***
PhaseAE ***
PhaseBR ***
PhaseAR ***
Outcomewinner ***
Time:PhaseAE ***
Time:PhaseBR ***
Time:PhaseAR ***
Time:Outcomewinner **
PhaseAE:Outcomewinner ***
PhaseBR:Outcomewinner
PhaseAR:Outcomewinner ***
Time:PhaseAE:Outcomewinner **
Time:PhaseBR:Outcomewinner **
Time:PhaseAR:Outcomewinner **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
---------------------------------------------------------------------
fit04cPh: [df0] Agency ~ (Time | Name) + Concreteness + Time * Phase * Outcome
# R2 for Mixed Models
Conditional R2: 0.103
Marginal R2: 0.024
---------------------------------------------------------------------
fit04cPh: [df0] Agency ~ (Time | Name) + Concreteness + Time * Phase * Outcome
# Intraclass Correlation Coefficient
Adjusted ICC: 0.081
Unadjusted ICC: 0.079
---------------------------------------------------------------------
fit04cPh: [df0] Agency ~ (Time | Name) + Concreteness + Time * Phase * Outcome
# ICC by Group
Group | ICC
-------------
Name | 0.065
---------------------------------------------------------------------
fit04aPh: [df0] Agency ~ (Time | Name) + Time * Phase * Outcome
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: Agency ~ (Time | Name) + Time * Phase * Outcome
Data: df0
Control: control
REML criterion at convergence: 23540
Scaled residuals:
Min 1Q Median 3Q Max
-8.1902 -0.5632 -0.0074 0.5639 7.3864
Random effects:
Groups Name Variance Std.Dev. Corr
Name (Intercept) 0.004798 0.06927
Time 0.003348 0.05786 -0.07
Residual 0.065916 0.25674
Number of obs: 169997, groups: Name, 870
Fixed effects:
Estimate Std. Error df t value Pr(>|t|)
(Intercept) 5.151e-01 4.450e-03 1.471e+03 115.767 < 2e-16
Time 5.703e-02 5.597e-03 3.426e+03 10.189 < 2e-16
PhaseAE -4.245e-02 7.688e-03 1.693e+05 -5.521 3.38e-08
PhaseBR -4.966e-01 6.025e-02 1.690e+05 -8.242 < 2e-16
PhaseAR -1.195e-01 1.034e-02 1.662e+05 -11.561 < 2e-16
Outcomewinner 2.383e-02 5.853e-03 1.425e+03 4.072 4.92e-05
Time:PhaseAE -4.906e-01 5.053e-02 1.692e+05 -9.710 < 2e-16
Time:PhaseBR 1.152e+00 1.903e-01 1.689e+05 6.052 1.44e-09
Time:PhaseAR -5.823e-02 1.523e-02 1.543e+05 -3.824 0.000131
Time:Outcomewinner -2.039e-02 7.198e-03 3.276e+03 -2.833 0.004646
PhaseAE:Outcomewinner 5.796e-02 9.165e-03 1.692e+05 6.324 2.56e-10
PhaseBR:Outcomewinner -9.406e-02 6.997e-02 1.689e+05 -1.344 0.178864
PhaseAR:Outcomewinner 1.478e-01 1.178e-02 1.679e+05 12.550 < 2e-16
Time:PhaseAE:Outcomewinner 1.675e-01 5.885e-02 1.692e+05 2.846 0.004424
Time:PhaseBR:Outcomewinner 6.256e-01 2.209e-01 1.688e+05 2.832 0.004623
Time:PhaseAR:Outcomewinner -4.478e-02 1.731e-02 1.602e+05 -2.586 0.009706
(Intercept) ***
Time ***
PhaseAE ***
PhaseBR ***
PhaseAR ***
Outcomewinner ***
Time:PhaseAE ***
Time:PhaseBR ***
Time:PhaseAR ***
Time:Outcomewinner **
PhaseAE:Outcomewinner ***
PhaseBR:Outcomewinner
PhaseAR:Outcomewinner ***
Time:PhaseAE:Outcomewinner **
Time:PhaseBR:Outcomewinner **
Time:PhaseAR:Outcomewinner **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
---------------------------------------------------------------------
fit04aPh: [df0] Agency ~ (Time | Name) + Time * Phase * Outcome
# R2 for Mixed Models
Conditional R2: 0.102
Marginal R2: 0.021
---------------------------------------------------------------------
fit04aPh: [df0] Agency ~ (Time | Name) + Time * Phase * Outcome
# Intraclass Correlation Coefficient
Adjusted ICC: 0.083
Unadjusted ICC: 0.081
---------------------------------------------------------------------
fit04aPh: [df0] Agency ~ (Time | Name) + Time * Phase * Outcome
# ICC by Group
Group | ICC
-------------
Name | 0.067
---------------------------------------------------------------------
fit04aPh: [df0] Agency ~ (Time | Name) + Time * Phase * Outcome
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: Agency ~ (Time | Name) + Time * Phase * Outcome
Data: df0
Control: control
REML criterion at convergence: 23540
Scaled residuals:
Min 1Q Median 3Q Max
-8.1902 -0.5632 -0.0074 0.5639 7.3864
Random effects:
Groups Name Variance Std.Dev. Corr
Name (Intercept) 0.004798 0.06927
Time 0.003348 0.05786 -0.07
Residual 0.065916 0.25674
Number of obs: 169997, groups: Name, 870
Fixed effects:
Estimate Std. Error df t value Pr(>|t|)
(Intercept) 5.151e-01 4.450e-03 1.471e+03 115.767 < 2e-16
Time 5.703e-02 5.597e-03 3.426e+03 10.189 < 2e-16
PhaseAE -4.245e-02 7.688e-03 1.693e+05 -5.521 3.38e-08
PhaseBR -4.966e-01 6.025e-02 1.690e+05 -8.242 < 2e-16
PhaseAR -1.195e-01 1.034e-02 1.662e+05 -11.561 < 2e-16
Outcomewinner 2.383e-02 5.853e-03 1.425e+03 4.072 4.92e-05
Time:PhaseAE -4.906e-01 5.053e-02 1.692e+05 -9.710 < 2e-16
Time:PhaseBR 1.152e+00 1.903e-01 1.689e+05 6.052 1.44e-09
Time:PhaseAR -5.823e-02 1.523e-02 1.543e+05 -3.824 0.000131
Time:Outcomewinner -2.039e-02 7.198e-03 3.276e+03 -2.833 0.004646
PhaseAE:Outcomewinner 5.796e-02 9.165e-03 1.692e+05 6.324 2.56e-10
PhaseBR:Outcomewinner -9.406e-02 6.997e-02 1.689e+05 -1.344 0.178864
PhaseAR:Outcomewinner 1.478e-01 1.178e-02 1.679e+05 12.550 < 2e-16
Time:PhaseAE:Outcomewinner 1.675e-01 5.885e-02 1.692e+05 2.846 0.004424
Time:PhaseBR:Outcomewinner 6.256e-01 2.209e-01 1.688e+05 2.832 0.004623
Time:PhaseAR:Outcomewinner -4.478e-02 1.731e-02 1.602e+05 -2.586 0.009706
(Intercept) ***
Time ***
PhaseAE ***
PhaseBR ***
PhaseAR ***
Outcomewinner ***
Time:PhaseAE ***
Time:PhaseBR ***
Time:PhaseAR ***
Time:Outcomewinner **
PhaseAE:Outcomewinner ***
PhaseBR:Outcomewinner
PhaseAR:Outcomewinner ***
Time:PhaseAE:Outcomewinner **
Time:PhaseBR:Outcomewinner **
Time:PhaseAR:Outcomewinner **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
---------------------------------------------------------------------
fit04aPh: [df0] Agency ~ (Time | Name) + Time * Phase * Outcome
# R2 for Mixed Models
Conditional R2: 0.102
Marginal R2: 0.021
---------------------------------------------------------------------
fit04aPh: [df0] Agency ~ (Time | Name) + Time * Phase * Outcome
# Intraclass Correlation Coefficient
Adjusted ICC: 0.083
Unadjusted ICC: 0.081
---------------------------------------------------------------------
fit04aPh: [df0] Agency ~ (Time | Name) + Time * Phase * Outcome
# ICC by Group
Group | ICC
-------------
Name | 0.067
---------------------------------------------------------------------
fit04aPh: [df0] Agency ~ (Time | Name) + Time * Phase * Outcome
# Fixed Effects
Parameter | Coefficient | SE | 95% CI | t(169977) | p
-----------------------------------------------------------------------------------------------------
(Intercept) | 0.52 | 4.45e-03 | [ 0.51, 0.52] | 115.77 | < .001
Time | 0.06 | 5.60e-03 | [ 0.05, 0.07] | 10.19 | < .001
Phase [AE] | -0.04 | 7.69e-03 | [-0.06, -0.03] | -5.52 | < .001
Phase [BR] | -0.50 | 0.06 | [-0.61, -0.38] | -8.24 | < .001
Phase [AR] | -0.12 | 0.01 | [-0.14, -0.10] | -11.56 | < .001
Outcome [winner] | 0.02 | 5.85e-03 | [ 0.01, 0.04] | 4.07 | < .001
Time × Phase [AE] | -0.49 | 0.05 | [-0.59, -0.39] | -9.71 | < .001
Time × Phase [BR] | 1.15 | 0.19 | [ 0.78, 1.52] | 6.05 | < .001
Time × Phase [AR] | -0.06 | 0.02 | [-0.09, -0.03] | -3.82 | < .001
Time × Outcome [winner] | -0.02 | 7.20e-03 | [-0.03, -0.01] | -2.83 | 0.005
Phase [AE] × Outcome [winner] | 0.06 | 9.17e-03 | [ 0.04, 0.08] | 6.32 | < .001
Phase [BR] × Outcome [winner] | -0.09 | 0.07 | [-0.23, 0.04] | -1.34 | 0.179
Phase [AR] × Outcome [winner] | 0.15 | 0.01 | [ 0.12, 0.17] | 12.55 | < .001
(Time × Phase [AE]) × Outcome [winner] | 0.17 | 0.06 | [ 0.05, 0.28] | 2.85 | 0.004
(Time × Phase [BR]) × Outcome [winner] | 0.63 | 0.22 | [ 0.19, 1.06] | 2.83 | 0.005
(Time × Phase [AR]) × Outcome [winner] | -0.04 | 0.02 | [-0.08, -0.01] | -2.59 | 0.010
# Random Effects
Parameter | Coefficient
----------------------------------------
SD (Intercept: Name) | 0.07
SD (Time: Name) | 0.06
Cor (Intercept~Time: Name) | -0.07
SD (Residual) | 0.26
fit04aPh: [df0] Agency ~ (Time | Name) + Time * Phase * Outcome
Characteristic | Beta | 95% CI1 | p-value |
---|---|---|---|
Time | 0.06 | 0.05, 0.07 | <0.001 |
Phase | |||
AE - BE | 0.01 | 0.00, 0.03 | 0.10 |
BR - BE | -0.64 | -0.75, -0.53 | <0.001 |
BR - AE | -0.66 | -0.77, -0.55 | <0.001 |
AR - BE | -0.04 | -0.06, -0.02 | <0.001 |
AR - AE | -0.05 | -0.08, -0.03 | <0.001 |
AR - BR | 0.60 | 0.49, 0.71 | <0.001 |
Outcome | |||
winner - loser | 0.04 | 0.00, 0.08 | 0.069 |
Time * Phase | |||
Time * AE | -0.49 | -0.59, -0.39 | <0.001 |
Time * BR | 1.2 | 0.78, 1.5 | <0.001 |
Time * AR | -0.06 | -0.09, -0.03 | <0.001 |
Time * Outcome | |||
Time * winner | -0.02 | -0.03, -0.01 | 0.005 |
Phase * Outcome | |||
AE * winner | 0.06 | 0.04, 0.08 | <0.001 |
BR * winner | -0.09 | -0.23, 0.04 | 0.2 |
AR * winner | 0.15 | 0.12, 0.17 | <0.001 |
Time * Phase * Outcome | |||
Time * AE * winner | 0.17 | 0.05, 0.28 | 0.004 |
Time * BR * winner | 0.63 | 0.19, 1.1 | 0.005 |
Time * AR * winner | -0.04 | -0.08, -0.01 | 0.010 |
Name.sd__(Intercept) | 0.07 | ||
Name.cor__(Intercept).Time | -0.07 | ||
Name.sd__Time | 0.06 | ||
Residual.sd__Observation | 0.26 | ||
1 CI = Confidence Interval |
fit04aPh: [df0] Agency ~ (Time | Name) + Time * Phase * Outcome
=====================================================================
# Average predicted values of Agency
Time | Predicted | 95% CI
------------------------------
-1.00 | 0.46 | 0.44, 0.47
-0.50 | 0.48 | 0.47, 0.49
0.00 | 0.50 | 0.50, 0.51
0.50 | 0.53 | 0.52, 0.54
1.00 | 0.55 | 0.54, 0.56
=====================================================================
# (Average) Linear trend for Time
Slope | 95% CI | p
---------------------------
0.05 | 0.04, 0.06 | < .001
=====================================================================
# (Average) Linear trend for Time
Slope | 95% CI | p
---------------------------
0.05 | 0.04, 0.06 | < .001
suppressWarnings(rm(list = ls(pattern = "^gg88")))
gg88 <- ggeff$pred0 %>% plot(limit_range=FALSE, show_data = FALSE, dot_alpha = 0.05)
gg88 <- gg88 + cogsys::theme0 + timeD + lineE + lineT + lineR + rect3 ## + scaleA
ggsave(file = paste0(ggeff$fbasefig, "-pred0-fig.png"), plot = gg88 + cogsys::theme2, width=8, height=24)
ggsave(file = paste0(ggeff$fbasefig, "-pred0-fig.svg"), plot = gg88 + cogsys::theme2, width=16, height=48)
gg88
fit04aPh: [df0] Agency ~ (Time | Name) + Time * Phase * Outcome
=====================================================================
# Average predicted values of Agency
Phase | Predicted | 95% CI
--------------------------------
BE | 0.52 | 0.52, 0.53
AE | 0.55 | 0.54, 0.57
BR | -0.12 | -0.19, -0.04
AR | 0.51 | 0.50, 0.52
=====================================================================
Phase | Predicted | 95% CI | p
-----------------------------------------
BE | 0.52 | 0.52, 0.53 | < .001
AE | 0.55 | 0.54, 0.57 | < .001
BR | -0.12 | -0.19, -0.04 | 0.004
AR | 0.51 | 0.50, 0.52 | < .001
=====================================================================
# Pairwise comparisons
Phase | Contrast | 95% CI | p
----------------------------------------
BE-AE | -0.03 | -0.04, -0.02 | < .001
BE-BR | 0.64 | 0.56, 0.72 | < .001
BE-AR | 0.02 | 0.00, 0.03 | 0.007
AE-BR | 0.67 | 0.59, 0.75 | < .001
AE-AR | 0.05 | 0.03, 0.06 | < .001
BR-AR | -0.62 | -0.70, -0.55 | < .001
suppressWarnings(rm(list = ls(pattern = "^gg88")))
gg88 <- ggeff$pred0 %>% plot(limit_range=FALSE, show_data = FALSE, dot_alpha = 0.05)
gg88 <- gg88 + cogsys::theme0 # + timeD + lineE + lineT + lineR + rect4 ## + scaleA
ggsave(file = paste0(ggeff$fbasefig, "-pred0-fig.png"), plot = gg88 + cogsys::theme2, width=8, height=24)
ggsave(file = paste0(ggeff$fbasefig, "-pred0-fig.svg"), plot = gg88 + cogsys::theme2, width=16, height=48)
gg88
fit04aPh: [df0] Agency ~ (Time | Name) + Time * Phase * Outcome
=====================================================================
# Average predicted values of Agency
Phase: BE
Time | Predicted | 95% CI
-------------------------------
-1.00 | 0.48 | 0.48, 0.49
-0.50 | 0.51 | 0.50, 0.51
0.00 | 0.53 | 0.52, 0.53
0.50 | 0.55 | 0.54, 0.56
1.00 | 0.57 | 0.56, 0.58
Phase: AE
Time | Predicted | 95% CI
-------------------------------
-1.00 | 0.86 | 0.80, 0.92
-0.50 | 0.69 | 0.66, 0.72
0.00 | 0.53 | 0.52, 0.53
0.50 | 0.36 | 0.34, 0.38
1.00 | 0.19 | 0.15, 0.24
Phase: BR
Time | Predicted | 95% CI
--------------------------------
-1.00 | -1.65 | -1.90, -1.40
-0.50 | -0.84 | -1.00, -0.69
0.00 | -0.03 | -0.09, 0.03
0.50 | 0.78 | 0.74, 0.81
1.00 | 1.59 | 1.46, 1.72
Phase: AR
Time | Predicted | 95% CI
-------------------------------
-1.00 | 0.55 | 0.53, 0.58
-0.50 | 0.53 | 0.51, 0.55
0.00 | 0.51 | 0.50, 0.52
0.50 | 0.49 | 0.48, 0.49
1.00 | 0.47 | 0.46, 0.47
=====================================================================
# (Average) Linear trend for Time
Phase | Slope | 95% CI | p
-----------------------------------------
BE | 0.06 | 0.05, 0.07 | < .001
AE | -0.43 | -0.53, -0.33 | < .001
BR | 1.21 | 0.84, 1.58 | < .001
AR | -1.19e-03 | -0.03, 0.03 | 0.936
=====================================================================
# (Average) Linear trend for Time
Phase | Contrast | 95% CI | p
----------------------------------------
BE-AE | 0.49 | 0.39, 0.59 | < .001
BE-BR | -1.15 | -1.52, -0.78 | < .001
BE-AR | 0.06 | 0.03, 0.09 | < .001
AE-BR | -1.64 | -2.03, -1.26 | < .001
AE-AR | -0.43 | -0.53, -0.33 | < .001
BR-AR | 1.21 | 0.84, 1.58 | < .001
suppressWarnings(rm(list = ls(pattern = "^gg88")))
gg88 <- ggeff$pred0 %>% plot(limit_range=FALSE, show_data = FALSE, dot_alpha = 0.05)
gg88 <- gg88 + cogsys::theme0 + timeD + lineE + lineT + lineR + rect3 + scaleA
ggsave(file = paste0(ggeff$fbasefig, "-pred0-fig.png"), plot = gg88 + cogsys::theme2, width=8, height=24)
ggsave(file = paste0(ggeff$fbasefig, "-pred0-fig.svg"), plot = gg88 + cogsys::theme2, width=16, height=48)
gg88
fit04aPh: [df0] Agency ~ (Time | Name) + Time * Phase * Outcome
=====================================================================
# Average predicted values of Agency
Outcome: loser
Phase | Predicted | 95% CI
--------------------------------
BE | 0.51 | 0.50, 0.52
AE | 0.50 | 0.48, 0.52
BR | -0.07 | -0.21, 0.08
AR | 0.39 | 0.37, 0.42
Outcome: winner
Phase | Predicted | 95% CI
--------------------------------
BE | 0.53 | 0.53, 0.54
AE | 0.57 | 0.56, 0.59
BR | -0.18 | -0.26, -0.09
AR | 0.57 | 0.56, 0.58
=====================================================================
Phase | Outcome | Predicted | 95% CI | p
---------------------------------------------------
BE | loser | 0.51 | 0.50, 0.52 | < .001
AE | loser | 0.50 | 0.48, 0.52 | < .001
BR | loser | -0.07 | -0.21, 0.08 | 0.364
AR | loser | 0.39 | 0.37, 0.42 | < .001
BE | winner | 0.53 | 0.53, 0.54 | < .001
AE | winner | 0.57 | 0.56, 0.59 | < .001
BR | winner | -0.18 | -0.26, -0.09 | < .001
AR | winner | 0.57 | 0.56, 0.58 | < .001
=====================================================================
# Pairwise comparisons
Phase | Outcome | Contrast | 95% CI | p
--------------------------------------------------------
BE-AE | loser-loser | 9.06e-03 | -0.01, 0.03 | 0.404
BE-BR | loser-loser | 0.57 | 0.43, 0.72 | < .001
BE-AR | loser-loser | 0.12 | 0.09, 0.14 | < .001
BE-BE | loser-winner | -0.03 | -0.04, -0.01 | < .001
BE-AE | loser-winner | -0.06 | -0.08, -0.05 | < .001
BE-BR | loser-winner | 0.69 | 0.60, 0.77 | < .001
BE-AR | loser-winner | -0.06 | -0.08, -0.05 | < .001
AE-BR | loser-loser | 0.57 | 0.42, 0.71 | < .001
AE-AR | loser-loser | 0.11 | 0.08, 0.14 | < .001
AE-BE | loser-winner | -0.03 | -0.06, -0.01 | 0.003
AE-AE | loser-winner | -0.07 | -0.10, -0.05 | < .001
AE-BR | loser-winner | 0.68 | 0.59, 0.76 | < .001
AE-AR | loser-winner | -0.07 | -0.09, -0.04 | < .001
BR-AR | loser-loser | -0.46 | -0.60, -0.31 | < .001
BR-BE | loser-winner | -0.60 | -0.74, -0.46 | < .001
BR-AE | loser-winner | -0.64 | -0.78, -0.49 | < .001
BR-BR | loser-winner | 0.11 | -0.06, 0.28 | 0.205
BR-AR | loser-winner | -0.64 | -0.78, -0.49 | < .001
AR-BE | loser-winner | -0.14 | -0.16, -0.12 | < .001
AR-AE | loser-winner | -0.18 | -0.20, -0.15 | < .001
AR-BR | loser-winner | 0.57 | 0.48, 0.66 | < .001
AR-AR | loser-winner | -0.18 | -0.20, -0.15 | < .001
BE-AE | winner-winner | -0.04 | -0.05, -0.02 | < .001
BE-BR | winner-winner | 0.71 | 0.63, 0.80 | < .001
BE-AR | winner-winner | -0.04 | -0.05, -0.02 | < .001
AE-BR | winner-winner | 0.75 | 0.66, 0.83 | < .001
AE-AR | winner-winner | 2.17e-03 | -0.01, 0.02 | 0.800
BR-AR | winner-winner | -0.75 | -0.83, -0.66 | < .001
suppressWarnings(rm(list = ls(pattern = "^gg88")))
gg88 <- ggeff$pred0 %>% plot(limit_range=FALSE, show_data = FALSE, dot_alpha = 0.05)
gg88 <- gg88 + cogsys::theme0 # + timeD + lineE + lineT + lineR + rect3 + scaleA
ggsave(file = paste0(ggeff$fbasefig, "-pred0-fig.png"), plot = gg88 + cogsys::theme2, width=8, height=24)
ggsave(file = paste0(ggeff$fbasefig, "-pred0-fig.svg"), plot = gg88 + cogsys::theme2, width=16, height=48)
gg88
fit04aPh: [df0] Agency ~ (Time | Name) + Time * Phase * Outcome
=====================================================================
# Average predicted values of Agency
Outcome: loser
Phase: BE
Time | Predicted | 95% CI
-------------------------------
-1.00 | 0.45 | 0.44, 0.46
-0.50 | 0.48 | 0.47, 0.49
0.00 | 0.51 | 0.50, 0.52
0.50 | 0.54 | 0.53, 0.55
1.00 | 0.57 | 0.56, 0.59
Outcome: loser
Phase: AE
Time | Predicted | 95% CI
--------------------------------
-1.00 | 0.90 | 0.79, 1.01
-0.50 | 0.69 | 0.62, 0.75
0.00 | 0.47 | 0.45, 0.49
0.50 | 0.25 | 0.22, 0.29
1.00 | 0.04 | -0.05, 0.13
Outcome: loser
Phase: BR
Time | Predicted | 95% CI
--------------------------------
-1.00 | -1.20 | -1.69, -0.70
-0.50 | -0.59 | -0.89, -0.29
0.00 | 0.02 | -0.10, 0.13
0.50 | 0.62 | 0.55, 0.69
1.00 | 1.23 | 0.97, 1.48
Outcome: loser
Phase: AR
Time | Predicted | 95% CI
-------------------------------
-1.00 | 0.39 | 0.34, 0.44
-0.50 | 0.39 | 0.36, 0.43
0.00 | 0.39 | 0.37, 0.41
0.50 | 0.39 | 0.38, 0.40
1.00 | 0.39 | 0.38, 0.41
Outcome: winner
Phase: BE
Time | Predicted | 95% CI
-------------------------------
-1.00 | 0.50 | 0.49, 0.51
-0.50 | 0.52 | 0.51, 0.52
0.00 | 0.54 | 0.53, 0.54
0.50 | 0.56 | 0.55, 0.57
1.00 | 0.58 | 0.56, 0.59
Outcome: winner
Phase: AE
Time | Predicted | 95% CI
-------------------------------
-1.00 | 0.84 | 0.77, 0.90
-0.50 | 0.69 | 0.66, 0.73
0.00 | 0.55 | 0.54, 0.56
0.50 | 0.41 | 0.39, 0.43
1.00 | 0.27 | 0.22, 0.32
Outcome: winner
Phase: BR
Time | Predicted | 95% CI
--------------------------------
-1.00 | -1.87 | -2.16, -1.58
-0.50 | -0.96 | -1.14, -0.78
0.00 | -0.05 | -0.12, 0.02
0.50 | 0.85 | 0.81, 0.90
1.00 | 1.76 | 1.61, 1.91
Outcome: winner
Phase: AR
Time | Predicted | 95% CI
-------------------------------
-1.00 | 0.63 | 0.60, 0.65
-0.50 | 0.60 | 0.58, 0.62
0.00 | 0.56 | 0.55, 0.58
0.50 | 0.53 | 0.53, 0.54
1.00 | 0.50 | 0.49, 0.51
=====================================================================
# (Average) Linear trend for Time
Outcome | Phase | Slope | 95% CI | p
---------------------------------------------------
loser | BE | 0.06 | 0.05, 0.07 | < .001
loser | AE | -0.43 | -0.53, -0.33 | < .001
loser | BR | 1.21 | 0.84, 1.58 | < .001
loser | AR | -1.19e-03 | -0.03, 0.03 | 0.936
winner | BE | 0.04 | 0.03, 0.05 | < .001
winner | AE | -0.29 | -0.35, -0.23 | < .001
winner | BR | 1.81 | 1.59, 2.03 | < .001
winner | AR | -0.07 | -0.08, -0.05 | < .001
=====================================================================
# (Average) Linear trend for Time
Outcome | Phase | Contrast | 95% CI | p
--------------------------------------------------------
loser-loser | BE-AE | 0.49 | 0.39, 0.59 | < .001
loser-loser | BE-BR | -1.15 | -1.52, -0.78 | < .001
loser-loser | BE-AR | 0.06 | 0.03, 0.09 | < .001
loser-winner | BE-BE | 0.02 | 0.01, 0.03 | 0.005
loser-winner | BE-AE | 0.34 | 0.28, 0.40 | < .001
loser-winner | BE-BR | -1.76 | -1.98, -1.54 | < .001
loser-winner | BE-AR | 0.12 | 0.10, 0.14 | < .001
loser-loser | AE-BR | -1.64 | -2.03, -1.26 | < .001
loser-loser | AE-AR | -0.43 | -0.53, -0.33 | < .001
loser-winner | AE-BE | -0.47 | -0.57, -0.37 | < .001
loser-winner | AE-AE | -0.15 | -0.26, -0.03 | 0.013
loser-winner | AE-BR | -2.25 | -2.49, -2.01 | < .001
loser-winner | AE-AR | -0.37 | -0.47, -0.27 | < .001
loser-loser | BR-AR | 1.21 | 0.84, 1.58 | < .001
loser-winner | BR-BE | 1.17 | 0.80, 1.55 | < .001
loser-winner | BR-AE | 1.50 | 1.12, 1.87 | < .001
loser-winner | BR-BR | -0.61 | -1.04, -0.17 | 0.007
loser-winner | BR-AR | 1.28 | 0.90, 1.65 | < .001
loser-winner | AR-BE | -0.04 | -0.07, -0.01 | 0.015
loser-winner | AR-AE | 0.29 | 0.22, 0.35 | < .001
loser-winner | AR-BR | -1.82 | -2.04, -1.59 | < .001
loser-winner | AR-AR | 0.07 | 0.03, 0.10 | < .001
winner-winner | BE-AE | 0.32 | 0.26, 0.38 | < .001
winner-winner | BE-BR | -1.78 | -2.00, -1.56 | < .001
winner-winner | BE-AR | 0.10 | 0.09, 0.12 | < .001
winner-winner | AE-BR | -2.10 | -2.33, -1.87 | < .001
winner-winner | AE-AR | -0.22 | -0.28, -0.16 | < .001
winner-winner | BR-AR | 1.88 | 1.66, 2.10 | < .001
ggeff$test3 <- ggeffects::test_predictions(ggeff$pred0, test="pairwise", p_adjust="fdr", collapse_levels=TRUE)
## cat0(sep0)
## print(ggeff$test3, n = Inf)
ggeff$test4 <- ggeff$test3 %>% as_tibble() %>%
dplyr::mutate(
PhaseDashCount = str_count(Phase, fixed("-")),
OutcomeDashCount = str_count(Outcome, fixed("-")),
TotalDashCount = PhaseDashCount + OutcomeDashCount,
) %>%
dplyr::filter(TotalDashCount==1) %>%
dplyr::select(-TotalDashCount) %>%
dplyr::arrange(PhaseDashCount, Outcome, Phase) %>%
dplyr::select(-c(PhaseDashCount, OutcomeDashCount)) %>%
identity()
print(ggeff$test4)
# A tibble: 16 × 7
Time Outcome Phase Contrast conf.low conf.high p.value
<chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl>
1 slope loser-winner AE -0.147 -0.262 -0.0321 1.27e- 2
2 slope loser-winner AR 0.0652 0.0321 0.0982 1.34e- 4
3 slope loser-winner BE 0.0204 0.00628 0.0345 5.18e- 3
4 slope loser-winner BR -0.605 -1.04 -0.172 6.62e- 3
5 slope loser AE-AR -0.432 -0.535 -0.330 2.45e-16
6 slope loser AE-BR -1.64 -2.03 -1.26 1.47e-16
7 slope loser BE-AE 0.491 0.392 0.590 7.06e-22
8 slope loser BE-AR 0.0582 0.0284 0.0881 1.53e- 4
9 slope loser BE-BR -1.15 -1.52 -0.779 1.82e- 9
10 slope loser BR-AR 1.21 0.836 1.58 3.23e-10
11 slope winner AE-AR -0.220 -0.281 -0.160 1.55e-12
12 slope winner AE-BR -2.10 -2.33 -1.87 5.37e-72
13 slope winner BE-AE 0.323 0.264 0.382 2.74e-26
14 slope winner BE-AR 0.103 0.0869 0.119 2.74e-35
15 slope winner BE-BR -1.78 -2.00 -1.56 9.36e-56
16 slope winner BR-AR 1.88 1.66 2.10 7.56e-62
suppressWarnings(rm(list = ls(pattern = "^gg88")))
gg88 <- ggeff$pred0 %>% plot(limit_range=FALSE, show_data = FALSE, dot_alpha = 0.05)
gg88 <- gg88 + timeD + lineE + lineT + lineR + rect0 + cogsys::theme0 + scaleA
ggsave(file = paste0(ggeff$fbasefig, "-pred0-fig.png"), plot = gg88 + cogsys::theme2, width=8, height=24)
ggsave(file = paste0(ggeff$fbasefig, "-pred0-fig.svg"), plot = gg88 + cogsys::theme2, width=24, height=72, limitsize = FALSE)
ggsave(file = paste0(ggeff$fbasefig, "-pred0-Fig.svg"), plot = gg88 + cogsys::theme2, width=24, height=96, limitsize = FALSE)
gg88
# knitr::opts_chunk$set(fig.width=unit(12,"cm"), fig.height=unit(18,"cm"))
# gg88
suppressWarnings(rm(list = ls(pattern = "^gg99")))
gg99 <- gg88 + cogsys::theme2 + scaleA
ggsave(file = paste0(ggeff$fbasefig, "-pred0-FIG.svg"), plot = gg99 + cogsys::theme2, width=24, height=96, limitsize = FALSE)
## gg99
fit04xPh
: Time x Phase x Outcomecount8 = 15e3
count8 = 1e3
df8 <- df0 %>%
## dplyr::group_by(Phase) %>% ## CAUTION
## dplyr::slice_sample(n=count8) %>% ## CAUTION
bruceR::grand_mean_center(
vars=c("Agency", "Time"),
std=FALSE,
add.suffix="C") %>%
identity()
contrasts(df8$Phase) <- contr.sum(levels(df8$Phase))
contrasts(df8$Outcome) <- contr.sum(levels(df8$Outcome))
contrasts(df8$Phase)
[,1] [,2] [,3]
BE 1 0 0
AE 0 1 0
BR 0 0 1
AR -1 -1 -1
[,1]
loser 1
winner -1
fit04xPh: [df8] AgencyC ~ (TimeC | Name) + TimeC * Phase * Outcome
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: AgencyC ~ (TimeC | Name) + TimeC * Phase * Outcome
Data: df8
Control: control
REML criterion at convergence: 23562.2
Scaled residuals:
Min 1Q Median 3Q Max
-8.1902 -0.5632 -0.0074 0.5639 7.3864
Random effects:
Groups Name Variance Std.Dev. Corr
Name (Intercept) 0.004849 0.06963
TimeC 0.003347 0.05786 -0.12
Residual 0.065916 0.25674
Number of obs: 169997, groups: Name, 870
Fixed effects:
Estimate Std. Error df t value Pr(>|t|)
(Intercept) -1.430e-01 1.111e-02 1.138e+05 -12.873 < 2e-16 ***
TimeC 2.911e-01 2.871e-02 1.687e+05 10.141 < 2e-16 ***
Phase1 1.673e-01 1.088e-02 1.689e+05 15.372 < 2e-16 ***
Phase2 1.815e-01 1.164e-02 1.688e+05 15.591 < 2e-16 ***
Phase3 -4.760e-01 3.189e-02 1.689e+05 -14.925 < 2e-16 ***
Outcome1 -2.021e-02 1.111e-02 1.138e+05 -1.819 0.06893 .
TimeC:Phase1 -2.443e-01 2.870e-02 1.689e+05 -8.510 < 2e-16 ***
TimeC:Phase2 -6.511e-01 3.535e-02 1.690e+05 -18.419 < 2e-16 ***
TimeC:Phase3 1.220e+00 8.317e-02 1.689e+05 14.671 < 2e-16 ***
TimeC:Outcome1 -8.335e-02 2.871e-02 1.687e+05 -2.904 0.00369 **
Phase1:Outcome1 7.600e-03 1.088e-02 1.689e+05 0.698 0.48496
Phase2:Outcome1 -1.568e-02 1.164e-02 1.688e+05 -1.347 0.17804
Phase3:Outcome1 7.591e-02 3.189e-02 1.689e+05 2.380 0.01730 *
TimeC:Phase1:Outcome1 9.355e-02 2.870e-02 1.689e+05 3.259 0.00112 **
TimeC:Phase2:Outcome1 9.791e-03 3.535e-02 1.690e+05 0.277 0.78180
TimeC:Phase3:Outcome1 -2.193e-01 8.317e-02 1.689e+05 -2.636 0.00838 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
---------------------------------------------------------------------
fit04xPh: [df8] AgencyC ~ (TimeC | Name) + TimeC * Phase * Outcome
# R2 for Mixed Models
Conditional R2: 0.102
Marginal R2: 0.021
---------------------------------------------------------------------
fit04xPh: [df8] AgencyC ~ (TimeC | Name) + TimeC * Phase * Outcome
# Intraclass Correlation Coefficient
Adjusted ICC: 0.083
Unadjusted ICC: 0.081
---------------------------------------------------------------------
fit04xPh: [df8] AgencyC ~ (TimeC | Name) + TimeC * Phase * Outcome
# ICC by Group
Group | ICC
-------------
Name | 0.067
---------------------------------------------------------------------
fit04xPh: [df8] AgencyC ~ (TimeC | Name) + TimeC * Phase * Outcome
do_checks <- TRUE
do_checks <- FALSE
if (do_checks) {
knitr::opts_chunk$set(fig.width=unit(8,"cm"), fig.height=unit(24,"cm"))
suppressWarnings(rm(list = ls(pattern = "^check8")))
check8 <- performance::check_model(get(model))
suppressWarnings(rm(list = ls(pattern = "^gg88")))
gg88 <- plot(check8)
## gg88
}
fit04xPh: [df8] AgencyC ~ (TimeC | Name) + TimeC * Phase * Outcome
fit04xPh: [df8] AgencyC ~ (TimeC | Name) + TimeC * Phase * Outcome
Warning: Minimum value of original data is not included in the
replicated data.
Model may not capture the variation of the data.Warning: Maximum value of original data is not included in the
replicated data.
Model may not capture the variation of the data.
file = file.path(
ofd4, "summary-performance-score.png")
perf0 <- performance::compare_performance(
fit01aPh, # [df0] Agency ~ (1 | Name) + 1
fit02aPh, # [df0] Agency ~ (Time | Name) + Time
fit03aPh, # [df0] Agency ~ (Time | Name) + Time * Phase
fit04aPh, # [df0] Agency ~ (Time | Name) + Time * Phase * Outcome
## CAUTION: COMMA
rank = TRUE, verbose = FALSE)
perf0 %>% performance::print_html()
Comparison of Model Performance Indices | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Name | Model | R2 (cond.) | R2 (marg.) | ICC | RMSE | Sigma | AIC weights | AICc weights | BIC weights | Performance-Score |
fit04aPh | lmerModLmerTest | 0.10 | 0.02 | 0.08 | 0.26 | 0.26 | 1.00 | 1.00 | 1.00 | 84.61% |
fit03aPh | lmerModLmerTest | 0.11 | 6.03e-03 | 0.10 | 0.26 | 0.26 | 2.51e-118 | 2.51e-118 | 7.03e-101 | 52.18% |
fit02aPh | lmerModLmerTest | 0.10 | 4.62e-04 | 0.10 | 0.26 | 0.26 | 9.57e-321 | 9.58e-321 | 3.26e-290 | 40.78% |
fit01aPh | lmerModLmerTest | 0.08 | 0.00 | 0.08 | 0.26 | 0.26 | 0.00e+00 | 0.00e+00 | 0.00e+00 | 0.99% |
NA |
Comparison of Model Performance Indices | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Name | Model | R2 (cond.) | R2 (marg.) | ICC | RMSE | Sigma | AIC weights | AICc weights | BIC weights | Performance-Score |
fit03aPh | lmerModLmerTest | 0.11 | 6.03e-03 | 0.10 | 0.26 | 0.26 | 2.51e-118 | 2.51e-118 | 7.03e-101 | 52.18% |
fit02aPh | lmerModLmerTest | 0.10 | 4.62e-04 | 0.10 | 0.26 | 0.26 | 9.57e-321 | 9.58e-321 | 3.26e-290 | 40.78% |
fit04aPh | lmerModLmerTest | 0.10 | 0.02 | 0.08 | 0.26 | 0.26 | 1.00 | 1.00 | 1.00 | 84.61% |
fit01aPh | lmerModLmerTest | 0.08 | 0.00 | 0.08 | 0.26 | 0.26 | 0.00e+00 | 0.00e+00 | 0.00e+00 | 0.99% |
NA |
Comparison of Model Performance Indices | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Name | Model | R2 (cond.) | R2 (marg.) | ICC | RMSE | Sigma | AIC weights | AICc weights | BIC weights | Performance-Score |
fit04aPh | lmerModLmerTest | 0.10 | 0.02 | 0.08 | 0.26 | 0.26 | 1.00 | 1.00 | 1.00 | 84.61% |
fit03aPh | lmerModLmerTest | 0.11 | 6.03e-03 | 0.10 | 0.26 | 0.26 | 2.51e-118 | 2.51e-118 | 7.03e-101 | 52.18% |
fit02aPh | lmerModLmerTest | 0.10 | 4.62e-04 | 0.10 | 0.26 | 0.26 | 9.57e-321 | 9.58e-321 | 3.26e-290 | 40.78% |
fit01aPh | lmerModLmerTest | 0.08 | 0.00 | 0.08 | 0.26 | 0.26 | 0.00e+00 | 0.00e+00 | 0.00e+00 | 0.99% |
NA |
model <- "fit01aPh" # [df0] Agency ~ (1 | Name) + 1
model <- "fit02aPh" # [df0] Agency ~ (Time | Name) + Time
model <- "fit03aPh" # [df0] Agency ~ (Time | Name) + Time * Phase
model <- "fit04aPh" # [df0] Agency ~ (Time | Name) + Time * Phase * Outcome
cat0(effectsize::interpret_r2(performance::r2(get(model))$R2_conditional, rules="cohen1988"))
weak
weak
suppressWarnings(rm(list = ls(pattern = "^gg88")))
gg88 <- sjPlot::plot_models(
## CAUTION the null model can not be used here
## Thus to keep the numbers consistent I have
## used model 02 as an input twice
## fit01aPh, # [df0] Agency ~ (Time | Name) + Time
fit02aPh, # [df0] Agency ~ (Time | Name) + Time
fit03aPh, # [df0] Agency ~ (Time | Name) + Time * Phase
fit04aPh, # [df0] Agency ~ (Time | Name) + Time * Phase * Outcome
fit04cPh,
m.labels = c("Model 2", "Model 3", "Model 4", "Model 4concr"),
legend.title = "Model",
spacing=1,
dot.size=1
) + line0h
ggsave(
file = file.path(ofd4, "summary-plot-models-i0001-base.png"),
plot = gg88,
width=8,
height=8)
knitr::opts_chunk$set(fig.width=unit(6,"cm"), fig.height=unit(6,"cm"))
gg88
## library(sjPlot)
## library(sjmisc)
## library(sjlabelled)
file <- file.path(ofd4, "summary-tab-model-i0001-base.html")
sjPlot::tab_model(
fit01aPh, # [df0] Agency ~ (1 | Name) + 1
fit02aPh, # [df0] Agency ~ (Time | Name) + Time
fit03aPh, # [df0] Agency ~ (Time | Name) + Time * Phase
fit04aPh, # [df0] Agency ~ (Time | Name) + Time * Phase * Outcome
show.reflvl = FALSE,
show.intercept = TRUE,
show.p = FALSE,
p.style = "numeric_stars",
dv.labels = c("Model 1", "Model 2", "Model 3", "Model 4"),
wrap.labels = 225,
file = file)
Model 1 | Model 2 | Model 3 | Model 4 | |||||
---|---|---|---|---|---|---|---|---|
Predictors | Estimates | CI | Estimates | CI | Estimates | CI | Estimates | CI |
(Intercept) | 0.50 *** | 0.49 – 0.50 | 0.50 *** | 0.49 – 0.50 | 0.53 *** | 0.52 – 0.53 | 0.52 *** | 0.51 – 0.52 |
Time | -0.01 *** | -0.02 – -0.01 | 0.04 *** | 0.04 – 0.05 | 0.06 *** | 0.05 – 0.07 | ||
Phase [AE] | -0.00 | -0.01 – 0.00 | -0.04 *** | -0.06 – -0.03 | ||||
Phase [BR] | -0.57 *** | -0.63 – -0.51 | -0.50 *** | -0.61 – -0.38 | ||||
Phase [AR] | -0.01 | -0.02 – 0.00 | -0.12 *** | -0.14 – -0.10 | ||||
Time × Phase [AE] | -0.36 *** | -0.41 – -0.31 | -0.49 *** | -0.59 – -0.39 | ||||
Time × Phase [BR] | 1.61 *** | 1.42 – 1.80 | 1.15 *** | 0.78 – 1.52 | ||||
Time × Phase [AR] | -0.10 *** | -0.11 – -0.09 | -0.06 *** | -0.09 – -0.03 | ||||
Outcome [winner] | 0.02 *** | 0.01 – 0.04 | ||||||
Time × Outcome [winner] | -0.02 ** | -0.03 – -0.01 | ||||||
Phase [AE] × Outcome [winner] | 0.06 *** | 0.04 – 0.08 | ||||||
Phase [BR] × Outcome [winner] | -0.09 | -0.23 – 0.04 | ||||||
Phase [AR] × Outcome [winner] | 0.15 *** | 0.12 – 0.17 | ||||||
(Time × Phase [AE]) × Outcome [winner] | 0.17 ** | 0.05 – 0.28 | ||||||
(Time × Phase [BR]) × Outcome [winner] | 0.63 ** | 0.19 – 1.06 | ||||||
(Time × Phase [AR]) × Outcome [winner] | -0.04 ** | -0.08 – -0.01 | ||||||
Random Effects | ||||||||
σ2 | 0.07 | 0.07 | 0.07 | 0.07 | ||||
τ00 | 0.01 Name | 0.01 Name | 0.01 Name | 0.00 Name | ||||
τ11 | 0.00 Name.Time | 0.00 Name.Time | 0.00 Name.Time | |||||
ρ01 | 0.18 Name | 0.18 Name | -0.07 Name | |||||
ICC | 0.08 | 0.10 | 0.10 | 0.08 | ||||
N | 870 Name | 870 Name | 870 Name | 870 Name | ||||
Observations | 169997 | 169997 | 169997 | 169997 | ||||
Marginal R2 / Conditional R2 | 0.000 / 0.084 | 0.000 / 0.102 | 0.006 / 0.107 | 0.021 / 0.102 | ||||
* p<0.05 ** p<0.01 *** p<0.001 |
./data/20240428T200156-politicians-aux-analysis/n0001-init//n0001-models-phase-i0008-all/summary-tab-model-i0001-base.html
fit01aPh
We fitted a constant (intercept-only) linear mixed model (estimated using REML
and Nelder-Mead optimizer) to predict Agency (formula: Agency ~ 1). The model
included Name as random effect (formula: ~1 | Name). The model's intercept is
at 0.50 (95% CI [0.49, 0.50], t(169994) = 177.65, p < .001).
Standardized parameters were obtained by fitting the model on a standardized
version of the dataset. 95% Confidence Intervals (CIs) and p-values were
computed using a Wald t-distribution approximation.
fit02aPh
We fitted a linear mixed model (estimated using REML and Nelder-Mead optimizer)
to predict Agency with Time (formula: Agency ~ Time). The model included Time
as random effects (formula: ~Time | Name). The model's total explanatory power
is weak (conditional R2 = 0.10) and the part related to the fixed effects alone
(marginal R2) is of 4.62e-04. The model's intercept, corresponding to Time = 0,
is at 0.50 (95% CI [0.49, 0.50], t(169991) = 174.88, p < .001). Within this
model:
- The effect of Time is statistically significant and negative (beta = -0.01,
95% CI [-0.02, -5.07e-03], t(169991) = -3.88, p < .001; Std. beta = -0.02, 95%
CI [-0.03, -0.01])
Standardized parameters were obtained by fitting the model on a standardized
version of the dataset. 95% Confidence Intervals (CIs) and p-values were
computed using a Wald t-distribution approximation.
fit03aPh
We fitted a linear mixed model (estimated using REML and Nelder-Mead optimizer)
to predict Agency with Time and Phase (formula: Agency ~ Time * Phase). The
model included Time as random effects (formula: ~Time | Name). The model's
total explanatory power is weak (conditional R2 = 0.11) and the part related to
the fixed effects alone (marginal R2) is of 6.03e-03. The model's intercept,
corresponding to Time = 0 and Phase = BE, is at 0.53 (95% CI [0.52, 0.53],
t(169985) = 166.75, p < .001). Within this model:
- The effect of Time is statistically significant and positive (beta = 0.04,
95% CI [0.04, 0.05], t(169985) = 12.19, p < .001; Std. beta = 0.09, 95% CI
[0.08, 0.11])
- The effect of Phase [AE] is statistically non-significant and negative (beta
= -4.14e-03, 95% CI [-0.01, 4.04e-03], t(169985) = -0.99, p = 0.321; Std. beta
= 0.07, 95% CI [0.03, 0.12])
- The effect of Phase [BR] is statistically significant and negative (beta =
-0.57, 95% CI [-0.63, -0.51], t(169985) = -18.56, p < .001; Std. beta = -2.51,
95% CI [-2.78, -2.24])
- The effect of Phase [AR] is statistically non-significant and negative (beta
= -9.12e-03, 95% CI [-0.02, 5.54e-04], t(169985) = -1.85, p = 0.065; Std. beta
= -8.65e-03, 95% CI [-0.05, 0.03])
- The effect of Time × Phase [AE] is statistically significant and negative
(beta = -0.36, 95% CI [-0.41, -0.31], t(169985) = -13.82, p < .001; Std. beta =
-0.76, 95% CI [-0.86, -0.65])
- The effect of Time × Phase [BR] is statistically significant and positive
(beta = 1.61, 95% CI [1.42, 1.80], t(169985) = 16.65, p < .001; Std. beta =
3.40, 95% CI [3.00, 3.80])
- The effect of Time × Phase [AR] is statistically significant and negative
(beta = -0.10, 95% CI [-0.11, -0.09], t(169985) = -13.81, p < .001; Std. beta =
-0.21, 95% CI [-0.24, -0.18])
Standardized parameters were obtained by fitting the model on a standardized
version of the dataset. 95% Confidence Intervals (CIs) and p-values were
computed using a Wald t-distribution approximation.
fit04aPh
We fitted a linear mixed model (estimated using REML and Nelder-Mead optimizer)
to predict Agency with Time, Phase and Outcome (formula: Agency ~ Time * Phase
* Outcome). The model included Time as random effects (formula: ~Time | Name).
The model's total explanatory power is weak (conditional R2 = 0.10) and the
part related to the fixed effects alone (marginal R2) is of 0.02. The model's
intercept, corresponding to Time = 0, Phase = BE and Outcome = loser, is at
0.52 (95% CI [0.51, 0.52], t(169977) = 115.77, p < .001). Within this model:
- The effect of Time is statistically significant and positive (beta = 0.06,
95% CI [0.05, 0.07], t(169977) = 10.19, p < .001; Std. beta = 0.12, 95% CI
[0.10, 0.14])
- The effect of Phase [AE] is statistically significant and negative (beta =
-0.04, 95% CI [-0.06, -0.03], t(169977) = -5.52, p < .001; Std. beta = -0.03,
95% CI [-0.11, 0.04])
- The effect of Phase [BR] is statistically significant and negative (beta =
-0.50, 95% CI [-0.61, -0.38], t(169977) = -8.24, p < .001; Std. beta = -2.12,
95% CI [-2.65, -1.60])
- The effect of Phase [AR] is statistically significant and negative (beta =
-0.12, 95% CI [-0.14, -0.10], t(169977) = -11.56, p < .001; Std. beta = -0.43,
95% CI [-0.51, -0.35])
- The effect of Outcome [winner] is statistically significant and positive
(beta = 0.02, 95% CI [0.01, 0.04], t(169977) = 4.07, p < .001; Std. beta =
0.09, 95% CI [0.05, 0.13])
- The effect of Time × Phase [AE] is statistically significant and negative
(beta = -0.49, 95% CI [-0.59, -0.39], t(169977) = -9.71, p < .001; Std. beta =
-1.04, 95% CI [-1.25, -0.83])
- The effect of Time × Phase [BR] is statistically significant and positive
(beta = 1.15, 95% CI [0.78, 1.52], t(169977) = 6.05, p < .001; Std. beta =
2.43, 95% CI [1.64, 3.22])
- The effect of Time × Phase [AR] is statistically significant and negative
(beta = -0.06, 95% CI [-0.09, -0.03], t(169977) = -3.82, p < .001; Std. beta =
-0.12, 95% CI [-0.19, -0.06])
- The effect of Time × Outcome [winner] is statistically significant and
negative (beta = -0.02, 95% CI [-0.03, -6.28e-03], t(169977) = -2.83, p =
0.005; Std. beta = -0.04, 95% CI [-0.07, -0.01])
- The effect of Phase [AE] × Outcome [winner] is statistically significant and
positive (beta = 0.06, 95% CI [0.04, 0.08], t(169977) = 6.32, p < .001; Std.
beta = 0.17, 95% CI [0.08, 0.26])
- The effect of Phase [BR] × Outcome [winner] is statistically non-significant
and negative (beta = -0.09, 95% CI [-0.23, 0.04], t(169977) = -1.34, p = 0.179;
Std. beta = -0.50, 95% CI [-1.12, 0.11])
- The effect of Phase [AR] × Outcome [winner] is statistically significant and
positive (beta = 0.15, 95% CI [0.12, 0.17], t(169977) = 12.55, p < .001; Std.
beta = 0.56, 95% CI [0.47, 0.65])
- The effect of (Time × Phase [AE]) × Outcome [winner] is statistically
significant and positive (beta = 0.17, 95% CI [0.05, 0.28], t(169977) = 2.85, p
= 0.004; Std. beta = 0.35, 95% CI [0.11, 0.60])
- The effect of (Time × Phase [BR]) × Outcome [winner] is statistically
significant and positive (beta = 0.63, 95% CI [0.19, 1.06], t(169977) = 2.83, p
= 0.005; Std. beta = 1.32, 95% CI [0.41, 2.24])
- The effect of (Time × Phase [AR]) × Outcome [winner] is statistically
significant and negative (beta = -0.04, 95% CI [-0.08, -0.01], t(169977) =
-2.59, p = 0.010; Std. beta = -0.09, 95% CI [-0.17, -0.02])
Standardized parameters were obtained by fitting the model on a standardized
version of the dataset. 95% Confidence Intervals (CIs) and p-values were
computed using a Wald t-distribution approximation.
=====================================================================
df0
df2
df3
df5
df8
=====================================================================
fit01aPh
fit02aPh
fit03aPh
fit04aPh
fit04cPh
fit04xPh